

Strategies and Adaptation to a Changing Climate Perspective from the World Bank

Kimberly Lyon, Water Resources Specialist and Satoru Ueda, Lead Dam Specialist

The World Bank SWEDCold Workshop 7 Gothenburg, June 15, 2023

OUR PLANET FACES AN **ACUTE WATER** CRISIS

billion people lack reliable access to safely managed drinking water 22

billion people live without access to safely managed sanitation

About

of the world's population lives in water-stressed basins

By 2050, global demand for water will increase by 20-30%

In heavily polluted areas declining water quality could reduce economic growth by up to

Drought affects about 5

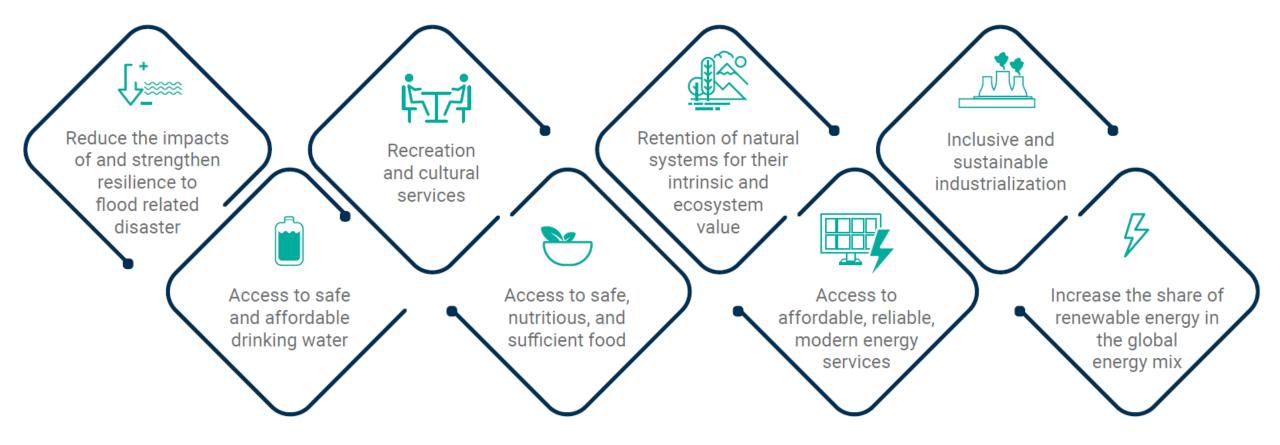
million people annually

What the Future Has in Store

A HAR DESCRIPTION OF THE REAL OF THE REAL

A New

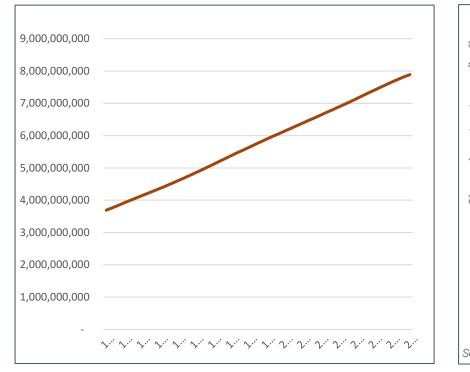
Paradigm


for Water

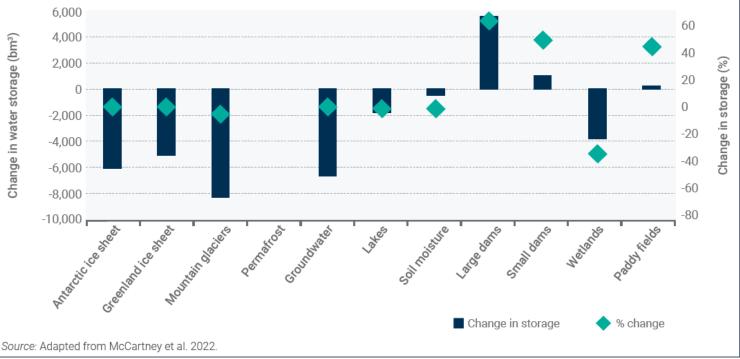
Storage

The 3 Core Services of Water Storage

Water storage underpins the provision of a multitude of water services



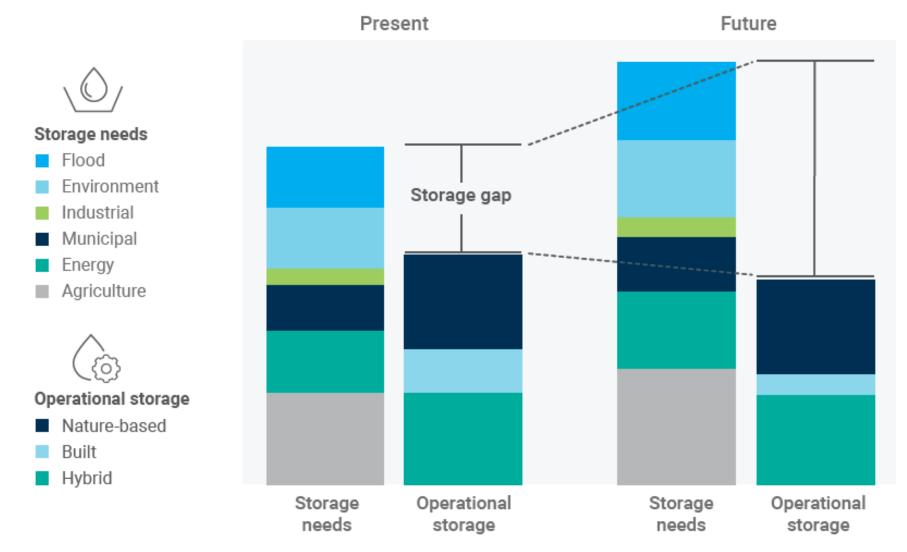
Problem: Declining Freshwater Storage


2 SUPPLY

1 DEMAND

World Population doubled in last 50 years

Freshwater storage declined by around 27,000 billion cubic meters

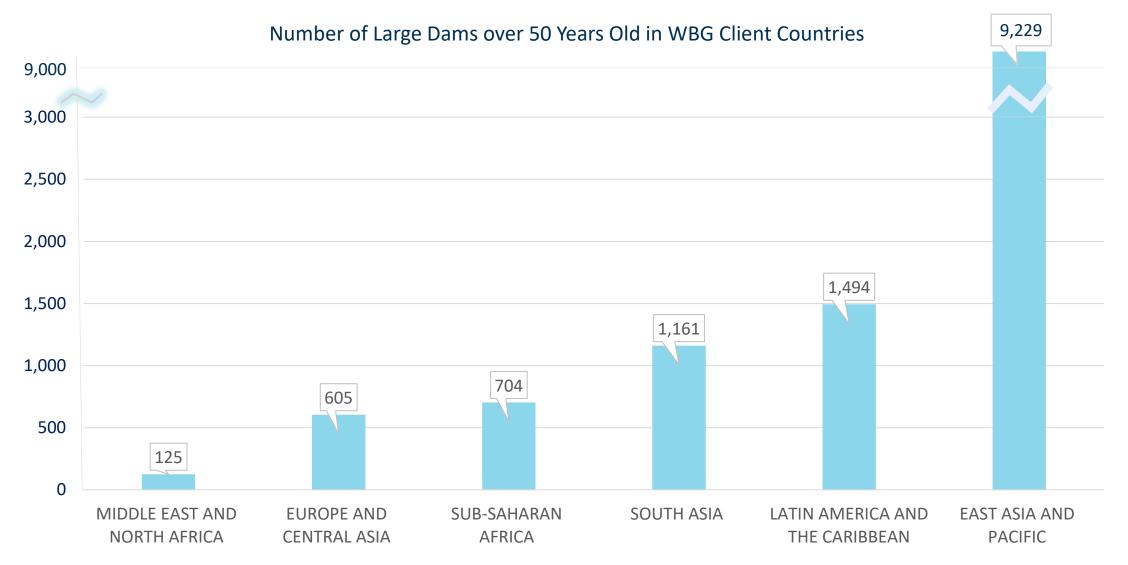

Problem: Compounded by Climate Change

1 DEMAND

3 CLIMATE CHANGE

Freshwater stitty a 10005 lemperatur, Droughts Climate change is upending the worlds' water cycle

The Growing Storage Gap: A Whole of Economy Issue


Source: Adapted from GWP and IWMI 2021.

Note: Amounts of storage needed and operational storage are stylized estimates.

From Storage Facilities to Storage Systems...

Going beyond life extension

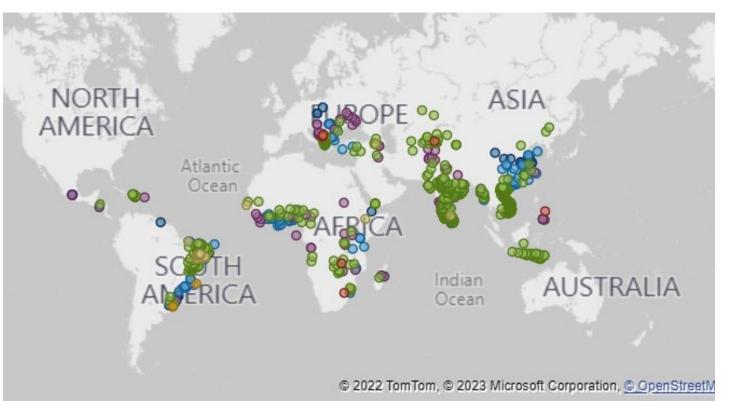
Source: ICOLD WRD

Portfolio of Bank-funded Projects Involving Dams

Projects for Rehab and Upgrading Existing Dams

Lending Pipeline Commitment Portfolio Net Commitment

2010


2020

World Bank Commitments (USD)

2000

\$0bn

1990

Challenge & Opportunity #1

Challenge:

• The need to retrofit and reoperate existing dams and reservoirs, owing to climate change and other socioeconomic pressures, comes as the world also grapples with the aging of its stock of dams.

Opportunity:

 Retrofitting, reoperation and modernization of existing presents is a chance to increase benefits, improve safety and performance, and revisit environmental and social dimensions to improve sustainability

Challenge & Opportunity #2

Challenge:

• As the past is no longer a reliable roadmap for the future, changing hydrology presents a risk to safety, asset performance, and economic and financial viability.

Opportunity:

 Stress-testing and robust decision-making techniques provide an opportunity to create projects not only more resilient to climate change but other shocks as well.

Forthcoming Work from the World Bank

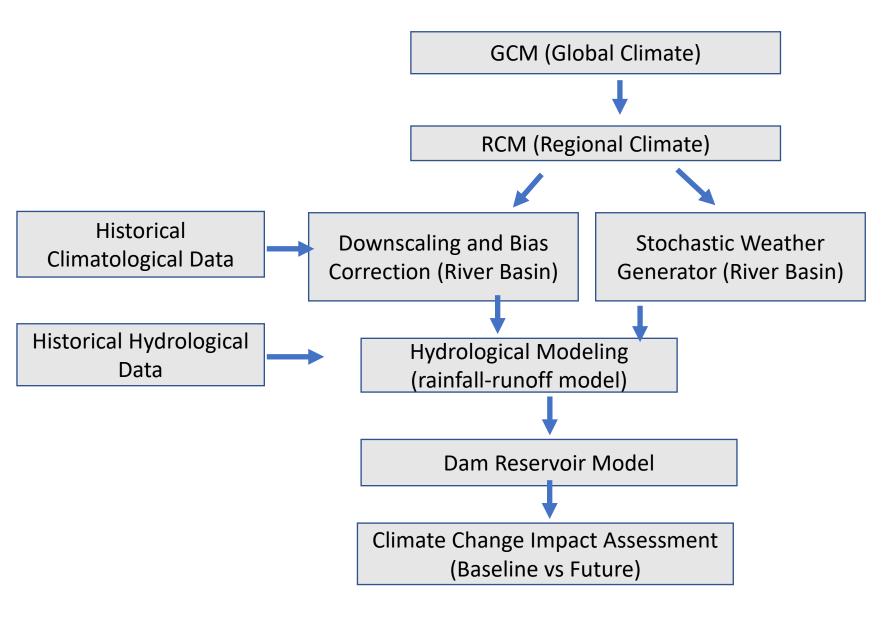
Getting More from Existing Dams: A Catalogue (collaboration with DamWatch Engineering)

- 5Rs typology covering built and nature reservoirs Bank's new report on global storage* (see next slide)
- Driving force: Dam safety as well as green growth agenda and climate mitigation and adaptation agenda
- A catalogue including 21 Fact Sheets covering technical, institutional, economic & financial, and environmental & social aspects
- Lower "handing fruits" covered by ongoing and future operations compared to construction of new dams

Source of 5Rs: What the Future Has in Store: A New Paradigm for Water Storage (WB 2023)

Getting More from Existing Dams: A Catalogue

(collaboration with DamWatch Engineering)


5 Rs	Type of Project	Sector
Retrofitting	Sustaining or enhancing performance of existing asset	Renewable energy
		Water supply and irrigation
		Flood control and climate change resilience
		Environmental improvements
	Add functionality to existing asset	Renewable energy
		Water supply and irrigation
		Social improvements
	Sustaining or enhancing performance of existing asset	Renewable energy
Rehabilitation		Water supply and irrigation
		Flood control and climate change resilience
		Safety
	Add functionality to existing asset	Environmental improvements
Reoperation	Sustaining or enhancing performance of existing asset	Renewable energy
		Water supply and irrigation
		Flood control and climate change resilience
		Environmental improvements
	Add functionality to existing asset	Flood control and climate change resilience
		Social improvements
Reform	Sustaining or enhancing performance of existing asset	Policy and institutional support

Note: Raising new dams is not covered in the context of existing dams

Climate Change Impact Assessment on Extreme Hydrological Events and Resilience Enhancement for Dam Safety (Collaboration with ICHARM under the auspices of UNESCO)

- Building on main guidelines (ICOLD, IHA, WMO, WB, etc.) and country specific diagnosis (e.g. Country Climate and Development Reports)
- A bottom-up approach from risk screening, risk analysis, climate stress test, risk management, to monitoring & evaluation according to IHA Climate Resilience Guide and WB decision tree framework.
- High risk cases involving unacceptable outcomes and plausibility may be further evaluated through modeling using downscaled GCM outputs in a proportionate manner to potential risks.
- A comprehensive review and application of adaptation and resilience enhancement measures against climate change impacts on extreme events

Climate Change Impact Assessment for Critical Cases

- Assessment should be fit for purpose considering potential risk of dams, data availability, required expertise and cost)
- Coping with uncertainties (GCM large ensembles, bias correction, etc.)
- Climate change impact on PMP and other critical events, such as GLOF

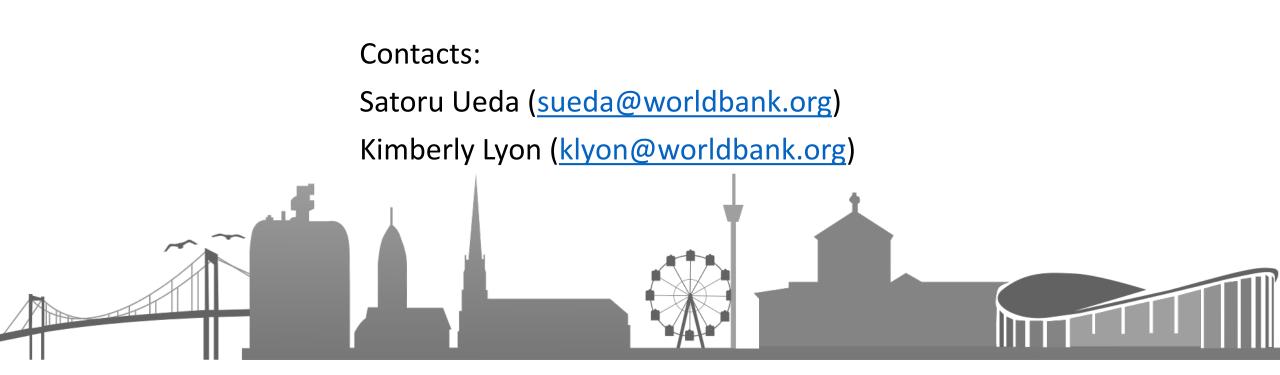
Climate Change Adaptation & Resilience Enhancement

- Review options covering both structural and non-structural measures in a comprehensive manner, considering technical, economic, environmental and social aspects
- Staged approach with due consideration to uncertainties in climate projections
- The evaluation of "tolerable" risk of dams and downstream communities vs utilities performance for hydropower, water supply, irrigation, etc. in consultation with regulator, owner, and other key stakeholders
- Cost effectiveness is an important element in particular for safety & resilience enhancement of existing dams vs new dams
- Regular monitoring, evaluation, and review is crucial.

Climate Change Adaptation & Resilience Enhancement - Structural Measures

Planning	Selection of dam types: easy to raise, resistant to overtopping	
	Emergency off-stream diversion or storage	
Design	Structural design to allow future dam raising, if and when necessary	
	Structural design to allow for easy and cost-effective addition of discharge capacity in the future, if and when hydrological loads increase	
	Emergency spillway, including fuse plugs, fuse gates, and so on under extreme high floods	
	Low-level outlets to for pre-flood reservoir drawdown and emergency drawdown	
Construction	Build and maintain river diversion structures to allow future use in sediment flushing	
Operation and maintenance	Test gates' operation regularly to ensure their reliability in emergency conditions	
	Consider adding controllable gates to free spillways	
	Increase reservoir freeboard during flood seasons	
Retrofitting and reoperation	Retrofit dams to provide more resistance to overtopping, in particular for small earthfill dams, using cement soil materials, roller compacted concrete, etc.	
	Increase spillway capacity or provide additional spillways using piano-key weir, fuse gate, fuse plug, etc.	

Climate Change Adaptation & Resilience Enhancement Non-Structural Measures


Planning	Catchment/watershed conservation and management to prevent peak flood increase, landslides or debris flow, and sediment yields	
	Sediment assessment and management plan using most suitable techniques	
	Enhanced hydro-meteorological monitoring/gauging involving communities, as appropriate	
	Assessment and monitoring of upstream geohazards, such as landslides, slope failure, and glaciers which could cause GLOFs	
	Initiate and maintain risk register throughout all phases of a dam's life cycle	
Design	Risk analysis and assessment, including climate change impact assessment covering impacts on geo-hazards and glaciers in the catchment to assess potential risks, mitigation measures, and design adaptation for all phases of dam life cycle	
Construction	Quality control, EPP, and first reservoir filling plan, including flood monitoring / forecasting (incl. snow /glacier melting depending on watersheds) and warning procedures	
Operation and maintenance	Hydro-meteorological monitoring of rainfall, snowpack, temperature, river flow, etc. including upstream geohazards and glaciers	
	Review and update reservoir operation rules; Introduction of enhanced reservoir operation and decision support system linked with flood forecasting system	
	Emergency preparedness—identification, classification, notification/warning, and response	
	Training dam operators and downstream communities for EPP	
Retrofitting and reoperation	Periodic reevaluation of mitigation and resilience enhancement measures against intensified floods under climate change	
	Establishment of adaptation fund with periodic replenishment	

Advanced inflow forecasting and reservoir operation is one of key adaptation measures to intensified floods

- 1. Technological advancement for enhanced rainfall & inflow forecasting
 - Allowing for more dynamic operation, balancing conflicting interests between water use benefits, flood management and dam safety
 - Dealing with uncertainties using Ensemble rainfall and runoff prediction with decision-support tools and downstream warning system
- Institutional setup and coordination (dam owner/operator, regulator, climate & hydrometeorological agency, science group, and other key stakeholders)
- 3. Needs for gradual introduction & piloting with capacity building for establishing a system with due consideration to the causes and patterns of intensive rainfall, basin characteristics (size, topography), etc.
- 4. Introduction of useful cases with advanced flood forecasting and decision support system (US, Italy, Japan, etc.)

Tack så mycket & Many thanks!

